ΤM

REZero

where it all starts

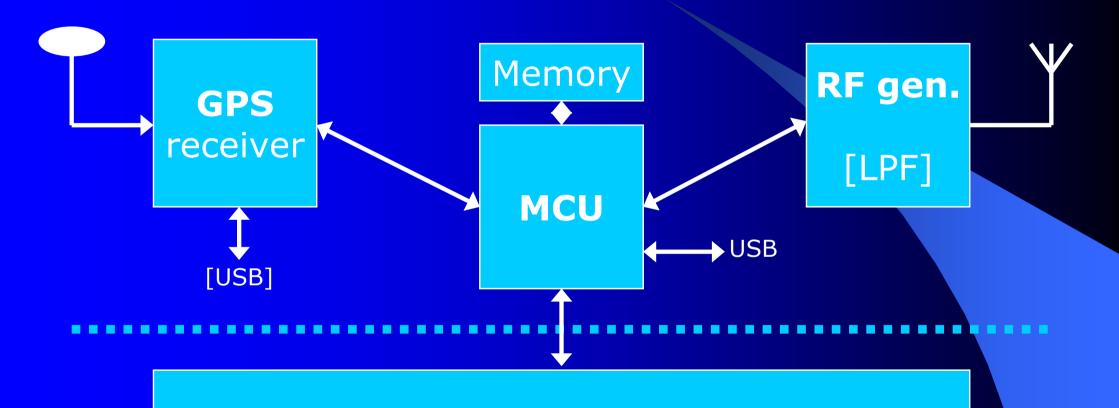
Learn to use GPS, Arduino and RF, use it as a beacon driver or ...

RFzero™ "prefab" S/W

- GPSDO 10 MHz for lab., 49,152 MHz for IC-9700, ...
- Signal generator (two-tone, I/Q, H3A, sweep, spread spectrum)
- WSPR and FST4W transmitters
- Beacon exciter (CW, FST4, FST4W, FT4, FT8, JS8, JT9, PI4, WSPR, ModeX, ...)
- VFO with A/B, split RIT and XIT
- Frequency counter up to 90 MHz
- QO-100/És'Hail fixed + TX/RX LO source
- Extensive open source library
- and ...
- ... or the one that you design

and all are GPS controlled

- Easy interface for LCD, rotary encoders, serial, I²C, SPI and ULN2803A for power control and other devices
- Learn how to program a RF source and roll your very own RF-app using the RFzero library and other Arduino programs and libraries


RFzero™ key components

- MCU
 - Cortex ARM M0 Microchip ATSAMD21G (Atmel)
 - Same as used in Arduino Zero/M0/M0+
 - Program development in the free Arduino IDE
- RF
 - SiLabs Si5351A
 - ~ 2 kHz to ~ 300 MHz (or harm.)
 - 1 mHz resolution in full range
- GPS
 - u-blox NEO-7M

RFzero™ block schematic

Optional peripheral devices e.g. LCD, controls, SWR, rotary encoder

RFzero™, Arduino Zero/Uno/Nano

	MICFIOCHIF MICFOCHIF		MICROCHIP MICROCHIP ATmege328P
	RFzero TM	Arduino Zero	Uno/Nano 🐫 🗰
Clock frequency	48 MHz	48 MHz	16 MHz
Clock type	crystal, 10 PPM	crystal, 20 PPM	ceramic, ½%
Architecture	32 bits ARM	32 bits ARM	8 bits RISC
Program memory	256 kB	256 kB	32 kB
EEPROM	16 kB (opt. in socket)	none	1 kB
SRAM	32 kB	32 kB	2 kB
ADC	12 bits	12 bits	10 bits
DAC	10 bits	10 bits	none
I/Os free* (max analog)	28 (8)	13 (6)	11 (6/8)

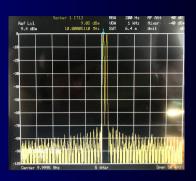
*: already used by GPS (3), I2C (2), LEDs (2) and USB (2)

SiLabs Si5351A

- 2289 Hz to ~300 MHz digital device used in a real RF design (harmonics usable beyond 1 GHz)
- 4 layers PCB, SMD and micro strip design for best RF performance
- Output balanced (factory), split or combined
 - More power,
 - better spectrum,
 - I/Q signals, or
 - two-tone generator
- Clock frequency measured continuously
- Separate power supply
- Stability better than 105 mHz (w/foam 13 mHz)

u-blox NEO-7M GPS/SBAS/QZSS

- 1 PPS accuracy
 - better than 30 ns RMS
 - 99% better than 60 ns
- On-board pre-amp voltage
- Cold start faster than 30 s
- Sensitivity better than -147 dBm
- 56 channels receiver
- Optional back-up bat. or super cap.
- Optional USB port e.g. PC time control
- Lots of documentation



GPSDO reference

- Cheap GPSDO for home lab or radio
- 27 MHz oscillator measured
 - Stability better than 1 PPB (foam cover)
 - Frequency counter <2 Hz 99% of time
- Output power 13 dBm/20 mW
- Display showing UTC and local time
- Optional eight channel 10 MHz distribution amplifier

Signal generator

- Frequencies from 2289 Hz to ~300 MHz
- Frequency resolution 1 Hz
- Single, two-tone, I/Q, H3A, sweep and spread spectrum
- Output power 13 dBm/20 mW (>1 MHz)
- RF on/off
- Control also via USB
- Attenuator control
- Keypad or two rotary encoders can be used for freq. and attenuator control

WSPR and FST4W transmitters

- Configured via USB
- 5, 10, 12 or 15 time slots in transmission cycle
- Any frequency or skip in any time slot
- Two static or random plus day/night frequency sets with up to 15 frequencies in each set
- Auto fill of HF frequencies or manual configuration
- Filter management (digital or analog)
- WSPR Type 1, Type 2 and Type 3 messages
- Static or variable square (JO55) in message
- RF performance
 - Any frequency from 2289 Hz to >200 MHz
 - Harmonics usable beyond 1,3 GHz
 - Power >13 dBm/20 mW (50 MHz)
 - In-band spurii typically than -70 dBc (50 MHz)

CW or mixed mode beacons

Beacons

- CW + carrier
- PI4 + CW + carrier
- Synchronized Beacon Project
- International Beacon Project
- FST4 + CW + carrier
- FST4W
- FT4 + CW + carrier
- FT8 + CW + carrier
- JS8 + CW + carrier
- JT9 + CW + carrier
- WSPR
- Frequency compensation for multiplier up to 72 GHz

RF performance

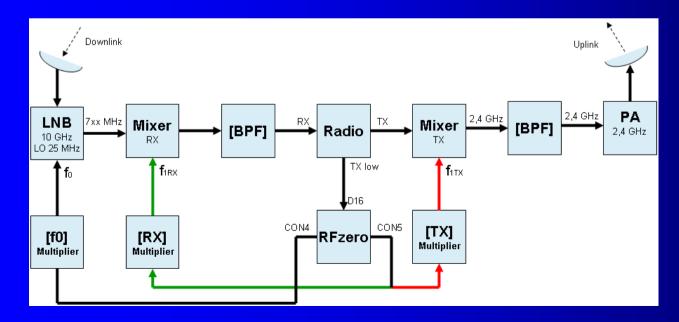
- Any frequency from 2289 Hz to ~300 MHz (or harmonic)
- Power >13 dBm/20 mW (1 MHz to 200 MHz)
- In-band spurious typically -70 dBc (50 MHz)

Frequency counter

Frequency counter up to 90 MHz

1 Hz resolution using 1 s gate time

QO-100/Es'Hail



One fixed signal source, e.g. for LNB

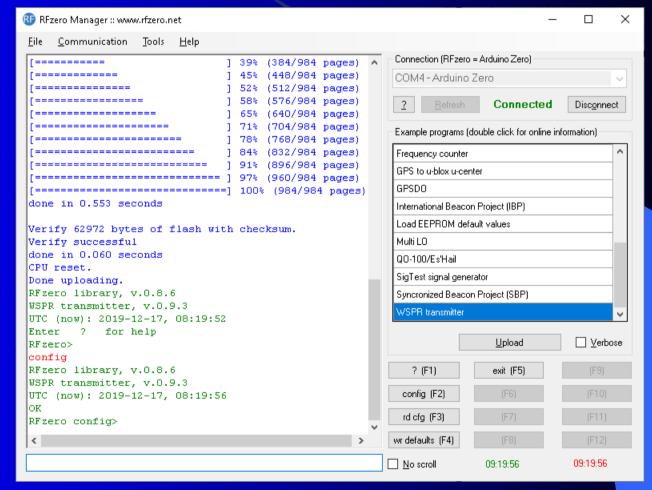
One dual TX/RX signal source, e.g. transverter LOs

Supports external multipliers

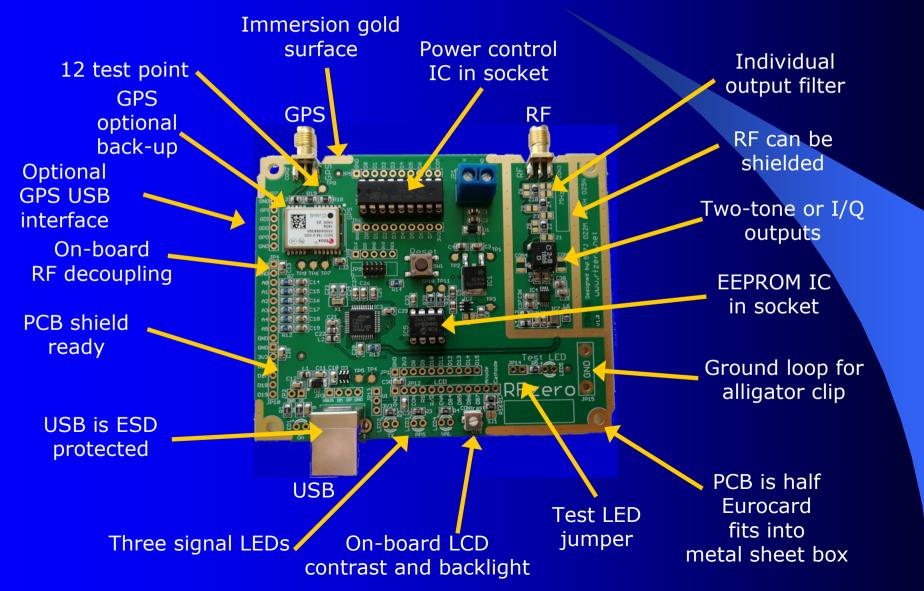
TX/RX detection

OZ5N: LNB and uplink helix

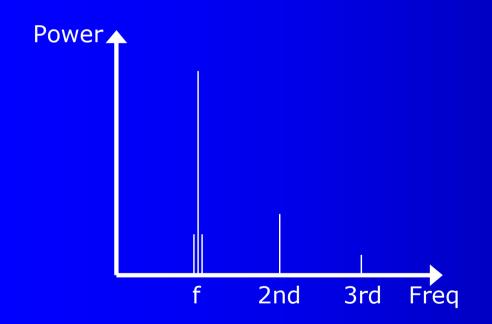
VFO with enhanced control


- Frequencies from 100 kHz to 268 MHz
- Frequency resolution 1 Hz
- Tune with rotary encoder
- RIT with rotary encoder
- Lots of pins free for enhanced control and monitoring of radio functions
- Optional I/Q outputs

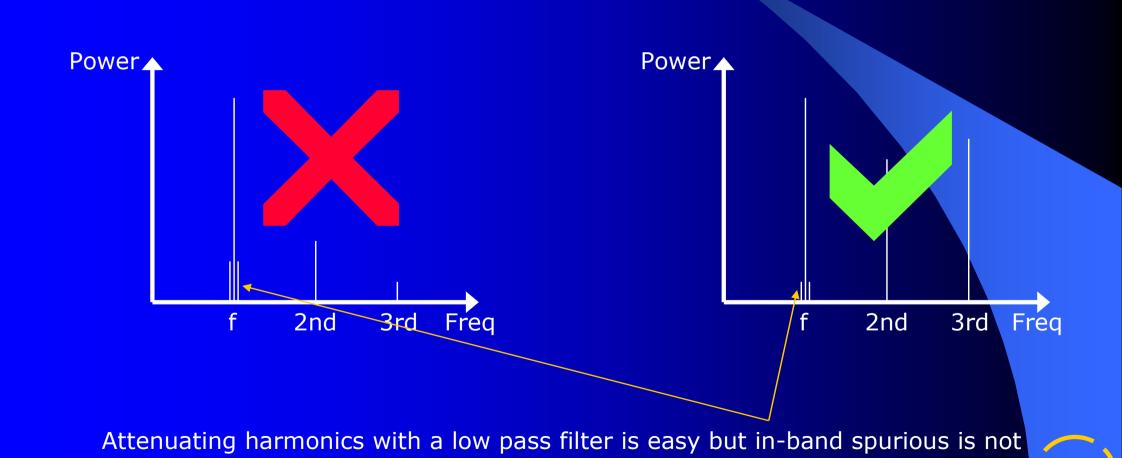
RFzero Manager

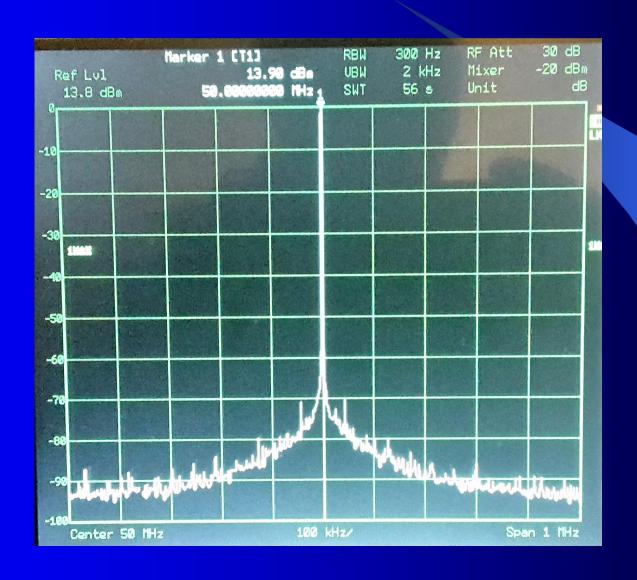

Using the RFzero Manager you don't need to know anything about Arduino

Windows program but runs also under Wine and Parallels Desktop



RFzero™ is really easy to use


Which spectrum do you prefer?



The right one of course!

50 MHz in-band spectrum

VUSHF beacons using RFzero™

 SK3SIX QRV since 4 Jan. 2019 followed by a 15 W PA, see QRZ.com

 AB5N/B, EI0SIX, EI1KNH, EI4RF, GB3MAT, GB3MCB, GI0GDP, KH6HME/B KH7Y, OZ1FYR, PI7ALK, PS8RF/B, RB1CA, SK3SIX, SK3VHF, SV3BSF, ...

More information

- www.rfzero.net data and shop
- www.groups.io/g/RFzero user group
- or ask
 - -Bo, OZ2M
 - Hans, OZ2XH
 - -Steen, OZ5N

